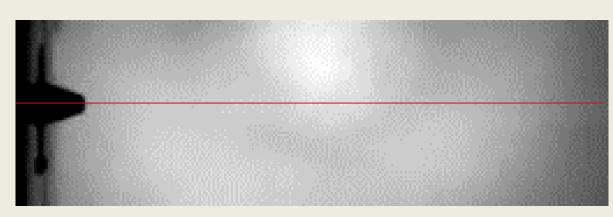


A NOVEL TECHNIQUE TO MEASURE SMALL CALIBER PROJECTILE BALLOTING

John J. Ritter, Richard A. Beyer, Andrew W. McBain

US Army Research Laboratory, RDRL-WML-D, Aberdeen Proving Ground, MD 21005

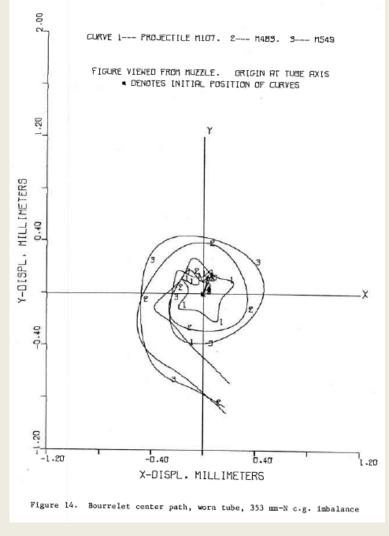


Balloting

- Dynamic misalignment of the projectile within the barrel of a gun
- In-bore yaw is the static misalignment of the projectile
 - i.e. the offset angle stays constant and rotates with the rifling
- Symptoms of balloting include
 - Increases in dispersion immediately from muzzle exit
 - Increased gun tube wear

5.56mm Short Gun

McCoy, R.L. "Modern Exterior Ballistics Second Edition," Atglen, PA. Schiffer. 2012

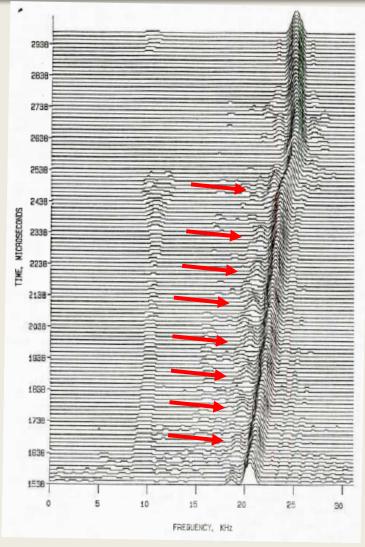


Explanations

- Balloting can occur because of the projectile entering the bore misaligned
 - Run out in the case neck
 - Non-axisymmetric projectiles
 - Unsupported leade distance
- Also occur when the center of mass is not in concentricity with the projectile and the bore

(Right) Calculated x and y displacement of the center of the bourrelet of 3 different 155mm projectiles with a CG imbalance in a worn tube¹

McCoy, R.L. "Modern Exterior Ballistics Second Edition," Atglen, PA. Schiffer. 2012


¹Chu, S.H., "In-Bore Motion Analysis of 155mm Projectiles M107, M483A1, and M549 in M198 Gun," ARLCD-TR-80048, Large Caliber Weapon Systems Laboratory, Dover, NJ; October 1981

Large Caliber Techniques

- Analytical
 - Need for experimental data to inform modeling
- Optical Lever
 - Significant blow-by decreases signal
- In-bore Radar
 - Provides verification of balloting
 - Lacks detailed information
- On-board diagnostics
 - Small projectile size
 - High acceleration
 - Extremely harsh environment

In-bore Radar technique showing balloting in a 37mm system¹

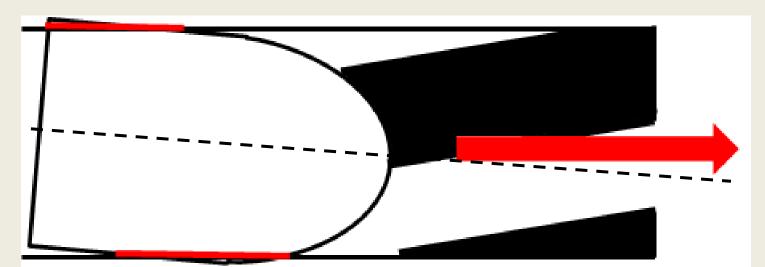
¹Haug, B.T., "Microwave Radar Techniques Applied to Gun Accuracy Measurements," BRL-MR-3581, Ballistics Research Laboratory, Aberdeen Proving Ground, Maryland; April 1987

Small Caliber Observations

- Short gun experiments had noticeable off axis projectile movement
 - (Shown previously)
- Added a 'flag' to projectile for use in normal barrels

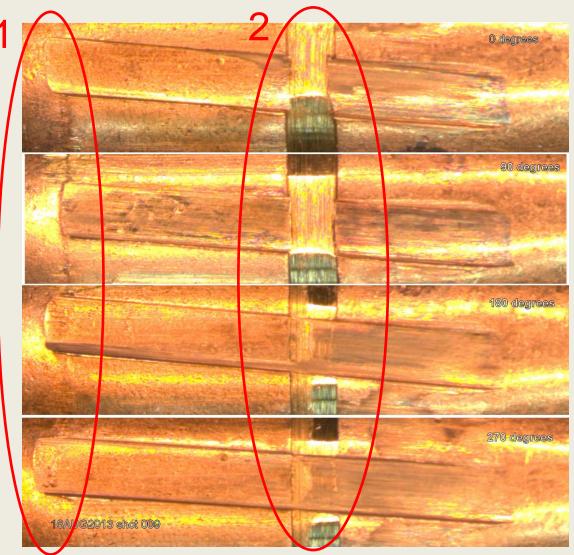
9mm, 5-in gun, 1:10 twist, 0.100" diameter carbon rod with flag

- Flag and rod could be impacting the dynamics
- Rod noticeably bending and splitting after exiting the barrel



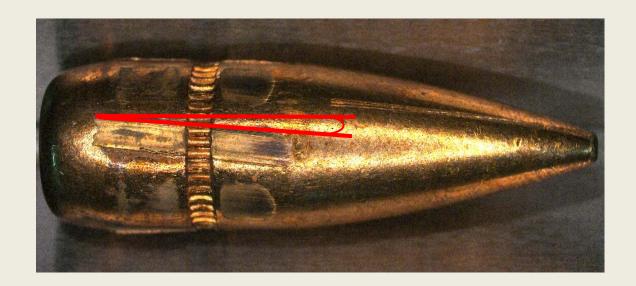
Engraving Marks

- Grooves made on the projectile from the gun tube rifling
- Represent the entirety of balloting motion during launch
- Projectiles were caught using several feet of foam blocks
- Expectation:
 - Grooves mismatched fore and aft (location)
 - Variable groove length
 - Groove depth differences


Projectile at 5° off axis (exaggeration). Note the different length markings and relative location

Engraving Marks (cont.)

- Recovered 7.62mm
 - 1) Grooves mismatched location
 - 2) Groove depth differences



Engraving Marks (cont.)

- Groove angle also explored
- Difficult to make precise surface measurements due to cylindrical surface and no depth information

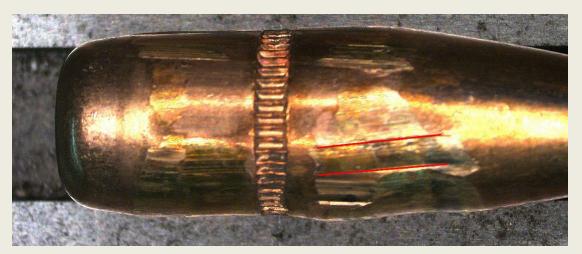
- Twist Angle = tan⁻¹(πd/n)
- Where d is the projectile diameter and n is the twist rate (1 in n)

Engraving Marks (cont.)

- Engraving marks on M80, 7.62mm, projectiles detailed in Table 1
- Very similar engraving angles around the projectile on both sides of the groove
- Engraved grooves approximately at the twist angle expected

Table 1. Angle measurements of grooves cut into projectiles.

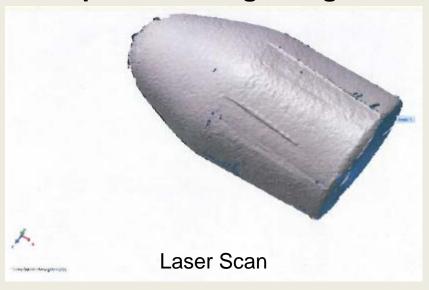
10-Inch Barrel Angles (degrees)				
Groove	Leading	Trailing	Leading	Trailing
1	5.36	5.23	0.12	0.17
2	5.38	5.21	0.15	0.22
3	5.43	5.13	0.21	0.07
4	5.42	5.22	0.11	0.19
	Averages		SD	
5-Inch Barrel Angles (degrees)				
Groove	Leading	Trailing	Leading	Trailing
1	5.23	5.05	0.12	0.08
2	5.30	5.10	0.27	0.46
3	5.43	4.91	0.09	0.31
4	5.21	5.05	0.09	0.15
	Averages		SD	

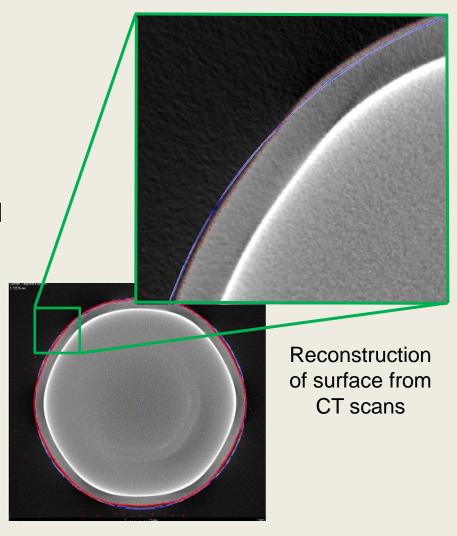

7.62mm with 1 in 10 twist 5.38°

Verification

- Devise methods to induce exaggerated balloting and to validate the measurement process
 - Asymmetric CG projectile with base designed to promote non-axial engraving
 - Misaligned breech
 - Bent barrel to promote balloting

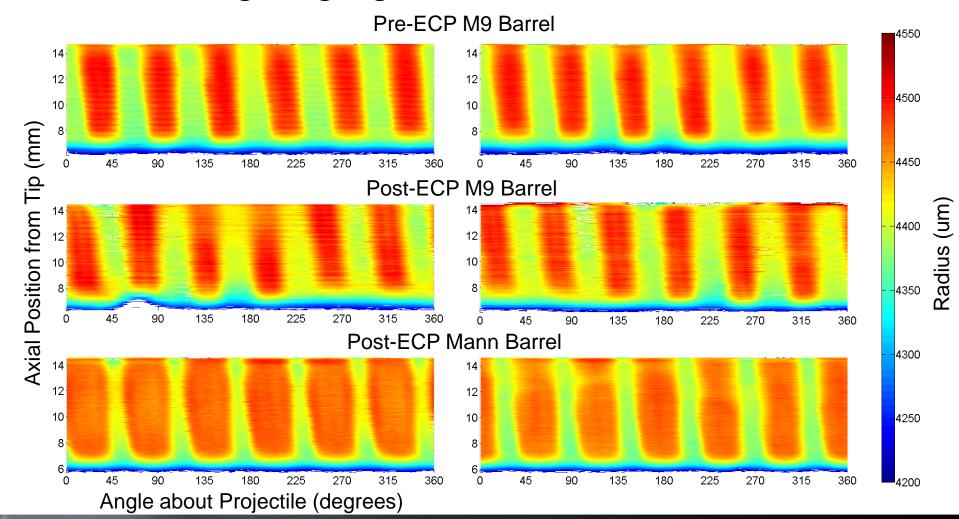
7.62mm Fired from barrel with 0.065" chamber offset


Chamfered 7.62mm with non axial CG



Current Work

- Exploring different options for measuring the engraving marks
- CT scan of the projectile and mapping the surface
- Blue light laser scanning
- These give more precise measurement of the location and depth of the engravings



Current Work (cont.)

- 9mm CT scan surface maps
- Variation in engraving angle and location fore-aft

Acknowledgements

- Joe Colburn for in-bore radar measurements
- Tony Canami for setup and assisting in the experiments
- Ryan Gilley and Scott Grendahl for information on laser scanning
- Chris Peitsch and James Garner for information on CT scanning